ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
T. C. Luce
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 1212-1225
Technical Paper | DIII-D Tokamak - Advanced Tokamak Scenarios | doi.org/10.13182/FST05-A1072
Articles are hosted by Taylor and Francis Online.
Research into the feasibility of steady-state operation of high-fusion-gain tokamak plasmas is one of the central elements of the DIII-D program. Realization of such discharges has progressed to the point of demonstrating well-aligned noninductive current profiles for a resistive time at 90% of the total current with plasma pressure and confinement consistent with fusion gain >5 in an ITER-sized tokamak. Full current drive discharges with poorer alignment have been obtained for shorter duration. The design methodology and the path to integrating the various elements necessary for full noninductive operation on DIII-D are discussed in detail.