ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
M. R. Wade, T. C. Luce, J. Jayakumar, P. A. Politzer, C. C. Petty, M. Murakami, J. R. Ferron, A. W. Hyatt, A. C. C. Sips
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 1199-1211
Technical Paper | DIII-D Tokamak - Advanced Tokamak Scenarios | doi.org/10.13182/FST05-A1071
Articles are hosted by Taylor and Francis Online.
Experiments in the DIII-D tokamak have demonstrated the ability to sustain ELMing H-mode discharges with high beta and good confinement quality under stationary conditions. These experiments have shown the ability to sustain normalized fusion performance (in terms of NH89P /q952) at or above that projected for Qfus = 10 operation in the International Thermonuclear Experimental Reactor (ITER) design over a wide range in operating parameters. In the best cases, operation is maintained at the free boundary, n = 1 stability limit. Confinement is found to be better than standard H-mode confinement scalings over a wide range in operation space, and experimentally measured transport is consistent with predictions from the GLF23 transport code. Projections using the standard ITER H-mode scaling laws based on these discharges indicate that Qfus = 5 can be maintained for >5400 s in ITER at q95 = 4.5 while Qfus = 40 can be obtained for ~2400 s at q95 = 3.2. These projected performance levels further validate the ITER design and suggest that long-pulse, high neutron fluence operation as well as very high fusion gain operation may be possible in next-generation tokamaks.