ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
Ohio Senate votes to repeal nuclear plant subsidies
After months of unsuccessful efforts by Ohio lawmakers to contend with the fallout from H.B. 6—the now-infamous nuclear subsidies bill signed into law in 2019—the state’s senate on March 3 passed a measure, S.B. 44, to repeal those subsidies. The vote was 32–0.
For those who may need reminding, federal prosecutors on July 21, 2020, arrested Larry Householder, then speaker of the Ohio House, and four lobbyists and political consultants for their involvement in an alleged $61 million corruption and racketeering scheme aimed at guaranteeing passage of H.B. 6, whose subsidies had kept Ohio’s Davis-Besse and Perry nuclear power plants from premature closure.
H.B. 6 established a seven-year program to charge the state’s electricity consumers fees to support payments of about $150 million annually to the plants’ operator, Energy Harbor Corporation, then known as FirstEnergy Solutions (FES). FES had announced in March 2018 that it would be forced to close Davis-Besse and Perry without some form of support from the state. (The payments to Energy Harbor were blocked last December by an Ohio Supreme Court injunction, which complemented an earlier lower court ruling.)
C. M. Greenfield
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 1178-1198
Technical Paper | DIII-D Tokamak - Advanced Tokamak Scenarios | dx.doi.org/10.13182/FST05-A1070
Articles are hosted by Taylor and Francis Online.
Research in DIII-D places a major emphasis on developing a scientific basis for high-performance steady-state operation for use in burning plasma tokamaks. This work has resulted in a long history of studies of high-performance regimes. Several of these regimes are described. H-mode, the first high-performance regime, is characterized by the formation of a transport barrier in the boundary region. The VH- and QH-modes, both variations of the H-mode, were both first identified through pioneering work on DIII-D. Although internal transport barriers (ITBs) had been observed previously, advanced diagnostics implemented on DIII-D and elsewhere allowed the physics of these phenomena to be elucidated. This work led to the combination of a VH-mode edge and an ITB core, which exhibits the highest fusion performance obtained in DIII-D. ITBs can also be combined with the QH-mode edge to produce the quiescent double barrier regime, characterized by nearly stationary high-performance plasmas. Like the ITB, high-li plasmas also exhibit performance improvements deeper in the core, in this case due to increased poloidal magnetic field. Although many of these regimes exhibit high-fusion performance only transiently, they provide important platforms for developing an understanding of the physics of transport and magnetohydrodynamic stability and provide the basis for extending to longer duration and evaluating compatibility with steady state.