ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2021 ANS Virtual Annual Meeting
June 14–16, 2021
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2021
Jan 2021
Latest Journal Issues
Nuclear Science and Engineering
May 2021
Nuclear Technology
April 2021
Fusion Science and Technology
February 2021
Latest News
Consultant recommends subsidies for Exelon plants
A research and consulting firm hired by Illinois governor J. B. Pritzker’s administration to scrutinize the financial fitness of Exelon’s Byron and Dresden nuclear plants approves of limited state subsidies for the facilities, according to a redacted version of the firm’s report made available yesterday.
C. C. Petty
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 1159-1169
Technical Paper | DIII-D Tokamak - Radio-Frequency Heating and Current Drive | dx.doi.org/10.13182/FST05-A1068
Articles are hosted by Taylor and Francis Online.
Two methods of radio-frequency (rf) current drive that are well suited to controlling and sustaining the current profile in burning plasma experiments have been studied in the DIII-D tokamak. Fast-wave current drive (FWCD) gave centrally peaked current densities that increased linearly with central electron temperature. While high harmonic absorption of the fast waves on energetic beam ions could reduce the available power for current drive, FWCD figures of merit as high as FW = 0.5 × 1019 A/m2W were still achieved. Electron cyclotron current drive (ECCD) was shown to be localized to the region of power deposition, with a current drive efficiency that decreased as the magnetic well depth increased. The detrimental effect of the magnetic well could be mitigated by raising the electron beta. ECCD figures of merit as high as EC = 0.5 × 1019 A/m2W were measured for central deposition. The experimental FWCD and ECCD were both extensively tested against theoretical models and were found to be in excellent agreement. Validation of these predictive models of rf current drive aids in scenario development for next-step tokamaks.