ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
R. Maingi, M. A. Mahdavi
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 1117-1126
Technical Paper | DIII-D Tokamak - Plasma Heat and Particle Exhaust | doi.org/10.13182/FST05-A1064
Articles are hosted by Taylor and Francis Online.
Density limit studies over the past 10 yr on DIII-D have successfully identified several processes that limit plasma density in various operating modes. The recent focus of these studies has been on maintenance of the high-density operational window with good H-mode level energy confinement. We find that detachment and onset of multifaceted axisymmetric radiation from the edge (MARFE), fueling efficiency, particle confinement, and magnetohydrodynamic activity can impose density limits in certain regimes. By studying these processes, we have devised techniques with either pellets or gas fueling and divertor pumping to achieve line average density above Greenwald scaling, relying on increasing the ratio of pedestal to separatrix density, as well as density profile peaking. The scaling of several of these processes to next-step devices (e.g., the International Thermonuclear Experimental Reactor) has indicated that sufficiently high pedestal density can be achieved with conventional fueling techniques while ensuring divertor partial detachment needed for heat flux reduction. One density limit process requiring further study is neoclassical tearing mode (NTM) onset, and techniques for avoidance/mitigation of NTMs need additional development in present-day devices operated at high density.