ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
D. G. Whyte
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 1096-1116
Technical Paper | DIII-D Tokamak - Plasma Heat and Particle Exhaust | doi.org/10.13182/FST05-A1063
Articles are hosted by Taylor and Francis Online.
Unique diagnostic and access features of the DIII-D tokamak, including a sample exposure system, have been used to carry out controlled and well-diagnosed plasma-surface interactions (PSI) experiments. An important contribution of the experiments has been the ability to link a given plasma exposure condition to a measured response of the plasma-facing surface and to thus understand the interaction. This has allowed for benchmarking certain aspects of erosion models, particularly near-surface particle transport. DIII-D has empirically quantified some of the PSI effects that will limit the operation availability and lifetime of future fusion devices, namely, net erosion limiting divertor plate lifetime and hydrogenic fuel retention in deposit layers. Cold divertor plasmas obtained with detachment can suppress net carbon divertor erosion, but many low-temperature divertor PSI phenomena remain poorly understood: nondivertor erosion sources, long-range particle transport, global erosion/deposition patterns, the enhancement of carbon erosion with neon impurity seeding, the sputtered carbon velocity distribution, and the apparent suppression of carbon chemical erosion in detachment. Long-term particle and energy fluences have reduced the chemical erosion yield of lower-divertor tiles. Plasma-caused modification of a material's erosion properties, including material mixing, will occur quickly and be important in long-pulse fusion devices, making prediction of PSI difficult in future devices.