ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
J. E. Kinsey
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 1060-1071
Technical Paper | DIII-D Tokamak - Achieving Reactor Quality Plasma Confinement | doi.org/10.13182/FST05-A1060
Articles are hosted by Taylor and Francis Online.
During the past decade, there has been significant progress made in our predictive understanding of turbulent transport in tokamaks. Theoretical advances have led to the development of comprehensive theoretical transport models based on drift wave physics. This paper summarizes the development of the GLF23 drift wave transport model, its application to modeling of DIII-D experiments, and burning plasma projections. The model predicts the transport due to ion temperature gradient, trapped electron, and electron temperature gradient modes and includes the effects of E × B shear flow and Shafranov shift stabilization. GLF23 has been successful in predicting the core profiles in a wide variety of discharges. Examples of published results are given along with a discussion of some outstanding physics issues.