ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
T. L. Rhodes, G. R. McKee, P. A. Politzer, D. W. Ross
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 1042-1050
Technical Paper | DIII-D Tokamak - Achieving Reactor Quality Plasma Confinement | doi.org/10.13182/FST05-A1058
Articles are hosted by Taylor and Francis Online.
Considerable research at DIII-D has been aimed at detailed comparisons of a variety of experimental fluctuation and turbulence measurements to turbulence simulations and theory. The goals of such comparisons are to improve the understanding of turbulence and transport as well as to test and provide feedback to the theory and simulations. Progress in this area will lead to confidence in the extrapolation of predictions to next-step fusion devices and, potentially, to improved control of transport. This paper summarizes some of the more recent and significant results of comparisons of experiment to theory and simulation that have been performed at DIII-D. These comparisons cover a range of plasma conditions (ohmic, L-mode, and impurity enhanced confinement), physical phenomena [transport, avalanches, zonal flows, and geodesic acoustic modes (GAMs)], and measurements (fluctuation levels, fluctuation spectra, radial correlation lengths, heat transport, and poloidal fluctuation velocity). Results reviewed here include comparisons between experimental turbulent radial correlation lengths and nonlinear turbulence simulations, measurements showing GAM activity (a type of zonal flow) similar to predictions, long-range or avalanche-type behavior with significant heat transport similar to that seen in nonlinear simulations, and reduction of turbulence with an enhancement of confinement during impurity injection similar to theory and simulation.