ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
R. J. Groebner, T. H. Osborne, M. E. Fenstermacher, A. W. Leonard, M. A. Mahdavi, R. A. Moyer, L. W. Owen, G. D. Porter, P. B. Snyder, P. C. Stangeby, T. L. Rhodes, N. S. Wolf
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 1011-1020
Technical Paper | DIII-D Tokamak - Achieving Reactor Quality Plasma Confinement | doi.org/10.13182/FST05-A1056
Articles are hosted by Taylor and Francis Online.
Studies of the H-mode pedestal in the DIII-D tokamak are presented. The global energy confinement increases as the plasma pressure on top of the pedestal increases. The best empirical description for a pedestal width parameter is pe [proportional to] (polPED)0.4, where pe is the width of the electron pressure pedestal and polPED is the poloidal beta at the top of the pedestal. The edge profiles of electron density ne, electron temperature Te, and ion temperature Ti can all have different shapes. Thus, a simple width scaling for the edge might not exist, and studies of the physics of individual profiles have been initiated. A model for the ne profile, based on self-consistent treatment of edge particle sources and edge particle transport, agrees with several experimental observations. The steep gradient region for the Te profile often extends farther into the plasma than the ne pedestal step. Magnetohydrodynamic stability provides the ultimate limits to the evolution of the pedestal and usually leads to edge instabilities called edge-localized modes (ELMs). However, the absence of ELMs in a regime called the Quiescent H-mode shows that large pedestals can be produced without ELMs.