ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
Ohio Senate votes to repeal nuclear plant subsidies
After months of unsuccessful efforts by Ohio lawmakers to contend with the fallout from H.B. 6—the now-infamous nuclear subsidies bill signed into law in 2019—the state’s senate on March 3 passed a measure, S.B. 44, to repeal those subsidies. The vote was 32–0.
For those who may need reminding, federal prosecutors on July 21, 2020, arrested Larry Householder, then speaker of the Ohio House, and four lobbyists and political consultants for their involvement in an alleged $61 million corruption and racketeering scheme aimed at guaranteeing passage of H.B. 6, whose subsidies had kept Ohio’s Davis-Besse and Perry nuclear power plants from premature closure.
H.B. 6 established a seven-year program to charge the state’s electricity consumers fees to support payments of about $150 million annually to the plants’ operator, Energy Harbor Corporation, then known as FirstEnergy Solutions (FES). FES had announced in March 2018 that it would be forced to close Davis-Besse and Perry without some form of support from the state. (The payments to Energy Harbor were blocked last December by an Ohio Supreme Court injunction, which complemented an earlier lower court ruling.)
T. N. Carlstrom
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 997-1010
Technical Paper | DIII-D Tokamak - Achieving Reactor Quality Plasma Confinement | dx.doi.org/10.13182/FST05-A1055
Articles are hosted by Taylor and Francis Online.
DIII-D contributions to H-mode transition physics and power thresholds are reviewed. Two general approaches were pursued: (a) establishing scaling relations based on empirical observations and (b) acquiring a theoretical understanding of the physics of the transition. The interaction of experiment results and the development of theories over the early 1990s led to the highly successful and widely accepted model of shear suppression of turbulence by crossed electric and magnetic fields (E × B) as the cause of improved confinement in H-mode. Experimental studies have also examined parameters at the edge of the plasma in order to identify a control parameter for the transition and to test various theories of the transition. The effect of the direction of the [nabla]B drift on the H-mode power threshold is used as a tool to further understand the physics of the L-H transition. Results on DIII-D and other tokamaks have guided researchers to study turbulent generated flows as a possible trigger for the L-H transition. Access to H-mode is controlled by a power threshold, and it is important to predict the threshold for next-generation tokamaks. In addition to electron density and toroidal field dependencies, it is found that many other parameters affect the power threshold. Studies of plasma size, magnetic configuration, and neutral effects have been performed. DIII-D data have been used in an international tokamak database to help establish scaling relations to predict power thresholds in future devices.