ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
J. C. DeBoo, D. R. Baker, M. R. Wade
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 988-996
Technical Paper | DIII-D Tokamak - Achieving Reactor Quality Plasma Confinement | doi.org/10.13182/FST05-A1054
Articles are hosted by Taylor and Francis Online.
DIII-D has studied thermal and particle transport in International Thermonuclear Experimental Reactor (ITER)-relevant regimes. In order to better distinguish between thermal transport models, it is important to test both the steady-state and time-dependent predictions of models against experimental results. Based on experiments in DIII-D, models containing the full spectral range of drift wave physics from ion temperature gradient to electron temperature gradient modes were in closest agreement with experimental observations. Inclusion of E × B flow shear stabilization effects was found to be important. Although some aspects of the experimental observations were well matched by various models, no individual model did well matching both the equilibrium and time-dependent electron and ion behavior, which clearly indicates that further improvement in transport models is required. Helium transport studies in DIII-D are encouraging for ITER in that they indicate that the measured particle diffusivity is sufficient to remove helium ash fast enough to avoid deleterious fuel dilution, but other factors for ITER such as divertor geometry and pumping speed must also be assessed.