ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
J. C. DeBoo, D. R. Baker, M. R. Wade
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 988-996
Technical Paper | DIII-D Tokamak - Achieving Reactor Quality Plasma Confinement | doi.org/10.13182/FST05-A1054
Articles are hosted by Taylor and Francis Online.
DIII-D has studied thermal and particle transport in International Thermonuclear Experimental Reactor (ITER)-relevant regimes. In order to better distinguish between thermal transport models, it is important to test both the steady-state and time-dependent predictions of models against experimental results. Based on experiments in DIII-D, models containing the full spectral range of drift wave physics from ion temperature gradient to electron temperature gradient modes were in closest agreement with experimental observations. Inclusion of E × B flow shear stabilization effects was found to be important. Although some aspects of the experimental observations were well matched by various models, no individual model did well matching both the equilibrium and time-dependent electron and ion behavior, which clearly indicates that further improvement in transport models is required. Helium transport studies in DIII-D are encouraging for ITER in that they indicate that the measured particle diffusivity is sufficient to remove helium ash fast enough to avoid deleterious fuel dilution, but other factors for ITER such as divertor geometry and pumping speed must also be assessed.