ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
W. W. Heidbrink
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 945-953
Technical Paper | DIII-D Tokamak - Achieving Reactor-Level Plasma Pressure | doi.org/10.13182/FST05-A1050
Articles are hosted by Taylor and Francis Online.
A summary of fast ion experiments in the DIII-D tokamak is given. Most of the experiments involve ~80-keV deuterium beam ions. Deceleration of dilute fast-ion populations is accurately described by coulomb scattering theory. Fast waves with frequencies several times the deuterium cyclotron frequency interact with beam ions when the product of wave number and gyroradius k[perpendicular]i is [greater than or approximately equal to]1.4. Global confinement of fast ions is often excellent although sawteeth, tearing modes, and beam-driven instabilities can cause additional transport. Intense beam-ion populations often drive instabilities. Toroidicity-induced Alfvén eigenmodes (TAE) and somewhat lower frequency modes (originally called beta-induced Alfvén eigenmodes) are often observed in a wide variety of plasma conditions. Over 50% of the beam power is lost during strong activity. Damping mechanisms such as mode coupling or radiative damping are needed to explain the observed TAE stability threshold. The most unstable toroidal mode number agrees well with theoretical expectations, but the radial and poloidal structure of the mode and the observed beam-ion transport have not been adequately explained. The modes with frequencies below the TAE are probably two types of energetic particle modes: the resonant TAE and the resonant kinetic ballooning mode.