ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
A. M. Garofalo
Fusion Science and Technology | Volume 48 | Number 2 | October 2005 | Pages 918-930
Technical Paper | DIII-D Tokamak - Achieving Reactor-Level Plasma Pressure | doi.org/10.13182/FST05-A1048
Articles are hosted by Taylor and Francis Online.
The effort to understand the physics of the resistive wall mode (RWM) and develop methods to control this magnetohydrodynamic mode to allow achievement of higher pressure in advanced tokamak plasmas has been an example of successful multi-institutional collaboration at the DIII-D National Fusion Facility in San Diego, California. DIII-D research in this area has produced several advances and breakthroughs following a coordinated research plan involving a sequence of measurements, development of new analysis tools, and the installation of new diagnostic and feedback stabilization hardware: Suppression of the RWM by active magnetic feedback has been demonstrated using the DIII-D six-element error field correction coil, rotational stabilization of the RWM has been demonstrated and sustained for all values of the plasma pressure from the no-wall to the ideal-wall stability limits, improved RWM feedback stabilization has been shown using a new set of 12 internal control coils, and newly developed models of feedback have shown good agreement with the measurements. By so doing, the DIII-D work on RWM stabilization has become a cornerstone of the long-term advanced tokamak program and is having impact on the world fusion program. Presently both ITER and FIRE are including plans for RWM stabilization in their programs.