ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
W. J. G. Workman, S. B. Kim, T. G. Kotzer
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 763-766
Technical Paper | Tritium Science and Technology - Biology, Health, and Radiation | dx.doi.org/10.13182/FST05-A1032
Articles are hosted by Taylor and Francis Online.
The measurement of organically bound tritium in environmental samples is essential for assessing the impact of tritium releases in terms of doses to the general public and a growing number of laboratories are now required to make them. Interlaboratory comparisons provide one way for laboratories to practice and check their analytical methods and procedures. At AECL's Chalk River Laboratories, two organic matrices with tritium concentrations less than 1.5 kBq/g were developed and distributed to seven laboratories in Canada, Europe and Russia for measurement. Some participants experienced difficulties in analysing the samples, especially with the lower concentrations, where results varied by more than an order of magnitude. Laboratories incorporating procedures such as rinsing to remove tritium from exchangeable sites, using standardized combustion methods and purifying the combustion water obtained more reliable, consistent results. The preparation of the standard reference material must be carefully executed in order to produce a homogeneous sample of uniform size. The tritium measurement community would benefit if standard reference materials in the environmental concentration range were available.