ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
H. Takeda, K. Miyamoto, S. Fuma, N. Ishii, K. Yanagisawa
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 755-758
Technical Paper | Tritium Science and Technology - Biology, Health, and Radiation | doi.org/10.13182/FST05-A1030
Articles are hosted by Taylor and Francis Online.
Tritiated water and some tritiated organic compounds (leucine, glucose and thymidine) were administered to rats by oral ingestion and the content of organically bound tritium (OBT) in subcellular fractions (cold PCA soluble, ethanol-ether soluble, hot PCA soluble and alkali soluble) of the liver were determined at various time points after ingestion. In the case of tritiated water, the initial OBT content was high in the cold PCA soluble fraction, which contains low molecular weight components, but as the time proceed the OBT was distributed to other fractions, which contains relatively high molecular weight components. Significant time variation in the OBT content was observed in the hot PCA soluble fraction containing nucleic acids, in which the OBT content, expressed as percentage of OBT content in all fractions, changed from 1 % at 12 hours to 15 % at 50 days. In the cases of tritiated organic compounds, the subcellular distribution of OBT was widely changed owing to their biochemical and metabolic characteristics. Thus, the OBT distribution among subcellular fractions was changed depending on the chemical form at ingestion and on the time after ingestion. The OBT distribution among four subcellular fractions after 22 day' continuous ingestion was also dependent on the chemical form of ingested tritium. Present results should be taken into account for internal dose estimation of tritium in different chemical forms.