ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
G. Kuang, J. Shan, W. Xu, Q. Zhang, Y. Liu, D. Liu, F. Liu, J. Lin, G. Zheng, J. Wu, W. Zhu, B. Ding, L. Shang, H. Xu, C. Yang, Y. Zhou, Y. Fang, J. Xie, Y. Wan
Fusion Science and Technology | Volume 36 | Number 2 | September 1999 | Pages 212-218
Technical Paper | doi.org/10.13182/FST99-A103
Articles are hosted by Taylor and Francis Online.
A lower hybrid current drive system has been built for the HT-7 superconductive tokamak to deliver a 1.2-MW microwave at a frequency of 2.45 GHz for a pulse length of up to 5 s. Twelve klystron amplifiers are used as wave generators, each generating a 100-kW (130 kW at maximum) microwave. A grill coupler composed of 2 x 12 waveguides is used to launch the waves from the 12 klystrons. The wave phase difference between the adjacent waveguides in either row of the grill can be set at any desired value by feedback controlling the digital phase shifters in the low-power microwave circuits in front of the klystrons. The 12 klystrons are fed by two equal high-voltage power supplies. The technical reliability of the system is shown by experimental results.