ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
Ohio Senate votes to repeal nuclear plant subsidies
After months of unsuccessful efforts by Ohio lawmakers to contend with the fallout from H.B. 6—the now-infamous nuclear subsidies bill signed into law in 2019—the state’s senate on March 3 passed a measure, S.B. 44, to repeal those subsidies. The vote was 32–0.
For those who may need reminding, federal prosecutors on July 21, 2020, arrested Larry Householder, then speaker of the Ohio House, and four lobbyists and political consultants for their involvement in an alleged $61 million corruption and racketeering scheme aimed at guaranteeing passage of H.B. 6, whose subsidies had kept Ohio’s Davis-Besse and Perry nuclear power plants from premature closure.
H.B. 6 established a seven-year program to charge the state’s electricity consumers fees to support payments of about $150 million annually to the plants’ operator, Energy Harbor Corporation, then known as FirstEnergy Solutions (FES). FES had announced in March 2018 that it would be forced to close Davis-Besse and Perry without some form of support from the state. (The payments to Energy Harbor were blocked last December by an Ohio Supreme Court injunction, which complemented an earlier lower court ruling.)
O. Kazachenko
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 737-742
Technical Paper | Tritium Science and Technology - Tritium in Neutrino Physics | dx.doi.org/10.13182/FST05-A1027
Articles are hosted by Taylor and Francis Online.
The objective of the KArlsruhe TRItium Neutrino experiment (KATRIN) is a direct measurement of the absolute mass of the electron (anti)neutrino by means of a precise study of the endpoint region of the tritium beta spectrum. The expected sensitivity of KATRIN to the neutrino mass is 0.2 eV (90% CL). The experimental set-up consists of four main parts: a source of electrons from tritium beta decay, a pre-spectrometer, a unique electron spectrometer with very high energy resolution and a multi pixel detector for low energy beta particles. A "Windowless Gaseous Tritium Source" (WGTS) with differential pumping of tritium is foreseen as the main source in KATRIN. This kind of source represents a gas dynamic system with the source tube 90 mm in diameter and 10 m in length placed in a strong magnetic field and differential pumping stages at both ends of this tube. Tritium gas will be injected in the centre of the source tube producing a gas flow directed to the ends. After pumping down by the differential pumps, compressing up to several hundreds millibars by the transfer pump and purification on the palladium membrane filter, tritium will be injected back to the source tube. The estimated flow rate of the circulated tritium is 1.8 standard cubic centimeters per second (sccs), which corresponds to 2.4×10-4 g/s (40 g/day). The stability of gas density and isotope composition in the source tube should be provided on the level of 0.1%. This paper will describe the design concept of the WGTS and will discuss the tritium processing techniques associated with the KATRIN experiment.