ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Yury Verzilov, Kentaro Ochiai, Takeo Nishitani
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 650-653
Technical Paper | Tritium Science and Technology - Materials Interaction and Permeation | doi.org/10.13182/FST05-A1009
Articles are hosted by Taylor and Francis Online.
Direct and indirect methods have been developed for measurements of tritium production rates on different Li isotopes. The methods are mainly intended for design-oriented blanket experiments and are based on the activation of thin diagnostic pellets. In the direct method, the tritium activity bred from Li isotopes can be evaluated separately using two activated Li-containing pellets, measured by liquid scintillation counting. The method allows precise measurements of tritium activity in the pellet at a level of 2 Bq/g. The indirect method is based on the use of model activation reactions, 35Cl(n,)32P and 31P(n,)32P, that possess a similar neutron spectrum sensitivity as direct tritium production reactions on 7Li and 6Li, respectively, and an effective measurement of the activation product of model reactions, 32P, by Cherenkov radiation counting. The reaction rate of model reactions can be calibrated in order to obtain the TPR.