ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
M. Iseli
Fusion Science and Technology | Volume 48 | Number 1 | July-August 2005 | Pages 629-633
Technical Paper | Tritium Science and Technology - Materials Interaction and Permeation | doi.org/10.13182/FST05-A1004
Articles are hosted by Taylor and Francis Online.
Knowledge of the levels of tritium in the First Wall (FW) coolant and components of ITER is important for public and operator safety and waste management. To overcome the large uncertainty of plasma wall interaction and physical properties, a basic set of properties is theoretically calculated for the dissolved tritium atoms in a perfect Beryllium (Be) lattice. These properties are combined with models for tritium trapping by lattice imperfections including the equilibrium conditions between gaseous, dissolved and trapped hydrogen isotopes. The 3 models for trapping by impurities, radiation damage and surface defects are adjusted to experimental solubilities, to tritium release experiments from irradiated samples and to outgassing of hydrogen isotopes from the JET FW. An elastic lattice model evaluates the activation energy of diffusion. For the calculations, the code DIET (Diffusion, Implantation and Equilibrium Trapping) was developed, which includes tritium trapping with time-dependent trap concentrations of multiple trap sites. The sensitivity analysis, with the expected deviations from the basic properties provides confidence that tritium permeation is below one gram in ITER for a neutron load of 0.3 MWa/m2 within 10 years.