ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Jonathan B. Lister, Ferdinand Hofmann, Jean-Marc Moret, Felix Bühlmann, Michael J. Dutch, Damien Fasel, Alain Favre, Pierre-Francois Isoz, Blaise Marletaz, Philippe Marmillod, Yves Martin, Albert Perez, David J. Ward
Fusion Science and Technology | Volume 32 | Number 3 | November 1997 | Pages 321-373
Technical Paper | Plasma Control Issues for Tokamaks | doi.org/10.13182/FST97-A1
Articles are hosted by Taylor and Francis Online.
The general control of tokamak plasmas has evolved considerably over the past few years with an increase in the plasma pulse length, an increase in the control of additional heating and fueling, and an increase in the degree to which the shape of the plasma can be varied. The Tokamak Configuration Variable (TCV) is specifically designed to explore the operational benefits of plasma shaping over a wide variety of plasma shapes. Consequently, considerable attention has been given to the control of the poloidal field coil currents that impose the desired shape. All aspects of the control of TCV plasmas, from the diagnostic measurements to the power supplies, via particular control algorithms and overall supervision are discussed.