ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Hanford completes 2,000-gallon TBI waste shipment
As part of its Test Bed Initiative (TBI) demonstration project, the Department of Energy’s Office of Environmental Management completed two shipments of treated, low-activity tank waste from the Hanford Site near Richland, Wash. The approximately 2,000 gallons of TBI waste will be solidified in grout and permanently disposed of at Waste Control Specialists’ (WCS) federal disposal facility in Andrews County, Texas, and at EnergySolutions’ disposal facility in Clive, Utah.
T. Matsuzaki, K. Nagamine, K. Ishida, M. Kato, H. Sugai, M. Tanase, G.H. Eaton
Fusion Science and Technology | Volume 41 | Number 3 | May 2002 | Pages 993-997
Purification and Chemical Process | Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001 | doi.org/10.13182/FST02-A22733
Articles are hosted by Taylor and Francis Online.
An in-situ tritium-deuterium gas-purification system has been constructed to produce a high-purity D-T target gas for muon catalyzed fusion experiments at the RIKEN-RAL Muon Facility. At the experiment site, the system enables us to purify the D-T target gas by removing 3He component, to adjust the D/T gas mixing ratio and to measure the hydrogen isotope components. The system is specially designed to handle the D-T gas with a negative pressure, and the maximum tritium inventory of 56 TBq (1500 Ci) is operated. The employed combination of a palladium filter and a cryotrap has demonstrated as an efficient device to purify hydrogen gas with a negative pressure. We have completed a series of muon catalyzed d-t fusion experiments at various tritium concentrations, including an experiment with a non-equilibrium D2-T2 target condition. The muon catalyzed t-t fusion process has also been studied using the tritium gas supplied free of 3He by the system.