ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
CNL investigates alloy with potential reactor applications
A research team led by Canadian Nuclear Laboratories is studying a type of high-entropy alloy (HEA) that seems to withstand a cascade-involved irradiation environment at elevated temperatures better than stainless steel exposed to similar conditions. In a paper published in the Journal of Nuclear Materials, the researchers describe an HEA made of chromium, iron, manganese, and nickel (CrFeMnNi) that has the potential to improve the safety and functionality of nuclear reactors, as well as of spacecraft.
Yasunori Nakai, Kazuyuki Noborio, Yuto Takeuchi, Ryuta Kasada, Yasushi Yamamoto, Satoshi Konishi
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 379-383
Alternate Concepts/Applications | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18106
Articles are hosted by Taylor and Francis Online.
An application of a cylindrical discharge tube type fusion neutron beam source for medical purpose was investigated. Practicality and possibility of the medical irradiation plan were evaluated from the standpoint of engineering and medicine.Cancer treatment by BNCT (Boron Neutron Capture Therapy) was selected as an effective application to take advantage of this neutron source. Neutron transport in a phantom was calculated with the MCNP5 (Monte Carlo Neutron Particle calculation code version5), and the distribution of dose on the affected part medicated with a boron agent suggested satisfactory focusing.Since this neutron source is small size, it is designed to irradiate the affected part from many directions by crossfire irradiation. Flexibility of attitude and operation modes permits irradiation in a supine position from arbitrary directions. Because of low neutron flux, irradiation therapy is planned for multi-fractionation in a manner similar to CHART (Continuous Hyperfractionated Accelerated Radio Therapy). Crossfire irradiation and CHART will allow us to achieve new cancer therapy with a relatively lower dose rate than conventional BNCT. It causes apoptosis selectively to a cancer cell, reducing side effects and a patient's recuperation burden. This result suggests the possibility of advanced cancer treatment which improves QOL (Quality of Life) of the patients.