ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Yasunori Nakai, Kazuyuki Noborio, Yuto Takeuchi, Ryuta Kasada, Yasushi Yamamoto, Satoshi Konishi
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 379-383
Alternate Concepts/Applications | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18106
Articles are hosted by Taylor and Francis Online.
An application of a cylindrical discharge tube type fusion neutron beam source for medical purpose was investigated. Practicality and possibility of the medical irradiation plan were evaluated from the standpoint of engineering and medicine.Cancer treatment by BNCT (Boron Neutron Capture Therapy) was selected as an effective application to take advantage of this neutron source. Neutron transport in a phantom was calculated with the MCNP5 (Monte Carlo Neutron Particle calculation code version5), and the distribution of dose on the affected part medicated with a boron agent suggested satisfactory focusing.Since this neutron source is small size, it is designed to irradiate the affected part from many directions by crossfire irradiation. Flexibility of attitude and operation modes permits irradiation in a supine position from arbitrary directions. Because of low neutron flux, irradiation therapy is planned for multi-fractionation in a manner similar to CHART (Continuous Hyperfractionated Accelerated Radio Therapy). Crossfire irradiation and CHART will allow us to achieve new cancer therapy with a relatively lower dose rate than conventional BNCT. It causes apoptosis selectively to a cancer cell, reducing side effects and a patient's recuperation burden. This result suggests the possibility of advanced cancer treatment which improves QOL (Quality of Life) of the patients.