ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Yoshi Hirooka, Haishan Zhou, Naoko Ashikawa, Takeo Muroga, Akio Sagara
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 345-350
Safety, Environment, and Tritium Handling | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST12-514
Articles are hosted by Taylor and Francis Online.
The first wall of a magnetic fusion power reactor is defined essentially as the plasma-facing walls of blankets. For the high temperature operation of self-cooled breeder blankets, the first wall is often designed to be less than 1cm thick to reduce mechanical stresses and as a result will be subjected to bi-directional hydrogen permeation by two distinctive mechanisms; in one direction by edge plasma-driven and in the other direction by bred tritium gas-driven permeation. Using a laboratory-scale plasma device and a one-dimensional diffusion model, plasma-driven and gas-driven hydrogen permeation behavior has been investigated under some of the conditions relevant to FLiBe-employed blankets. For a 5mm F82H membrane, the plasma-driven permeation flux at ~500 eC and the gas-driven hydrogen permeation flux at ~350 CC have been measured to be of the orders of 1013 H-atoms/cm2/s and 1014 H-atoms/cm2/s, respectively. From these data one predicts that gas-driven permeation could dominate the hydrogen isotope transport through the first wall.