ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
J. D. Rader, B. H. Mills, D. L. Sadowski, M. Yoda, S. I. Abdel-Khalik
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 315-319
Divertor and High-Heat-Flux Components | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18096
Articles are hosted by Taylor and Francis Online.
The helium-cooled modular divertor concept with integrated pin array developed by the Karlsruhe Research Center (FZK) is unusual among helium-cooled tungsten divertor designs in that it relies upon an array of pin fins on the back of the cooled surface, instead of jet impingement, to cool the plasma-facing surface. The Georgia Tech group experimentally studied a similar design constructed of brass which combined jet impingement with an array of identical cylindrical pin fins using air at nondimensional coolant mass flow rates, i.e. Reynolds numbers, which spanned the range expected under prototypical conditions. The results suggested that the pin-fin array, at least for the particular geometry studied, provides little, if any, additional cooling beyond that provided by jet impingement.Given that this earlier study considered only one pin-fin array geometry, however, a numerical study was performed to investigate whether changes in the array geometry could improve performance. Specifically, numerical simulations using the commercially available computational fluid dynamics software package ANSYS® 14.0 was used to examine how varying the pitch-to-diameter ratio for the fin array and the height of the fins affected average pressure boundary temperature and the pressure drop across the divertor. These results can, with appropriate experimental validation, be used to determine whether pin-fin arrays can be used to improve the thermal performance of helium-cooled tungsten divertors.