ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Alice Ying, Hongjie Zhang, Joseph Mauricio Garde, Mike Ulrickson
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 309-314
Divertor and High-Heat-Flux Components | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18095
Articles are hosted by Taylor and Francis Online.
The impact of Be tile size on the stress exerted on the CuCrZr heat sink for the ITER EHF finger was examined. The study especially focused on the areas beneath the tiles that are exposed to the high convective heat flux. For reference, in a Be tile size of 50x50x8 mm3, the calculated equivalent strain range using elastic analysis for the path of interest through the side wall of the CuCrZr heat sink resulted in a peak value at the inner wall of ~0.492%. The corresponding fatigue lifetime of the heat sink locally is unacceptably low, 1400 cyclic operations. By using smaller tiles, lower stress amplitudes are observed due to a smaller deformation. In this paper, the total strain range under ITER projected pulsed operating conditions is analyzed for a range of Be tile sizes. The analysis model uses a complete pair of twin fingers as opposed to a sub-model of two tiles. The paper documents the calculated cyclic lifetime of the ITER EHF CuCrZr heat sink with respect to Be tile size and peak heat loads by evaluating the total strain range both from elastic and time independent elasto-plastic analyses for repeated cycle.