ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
R. Leonard Myatt, Nicolai N. Martovetsky, Charlotte Barbier, Kevin D. Freudenberg
Fusion Science and Technology | Volume 64 | Number 2 | August 2013 | Pages 161-167
ITER | Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 | doi.org/10.13182/FST13-A18072
Articles are hosted by Taylor and Francis Online.
The ITER central solenoid (CS) is wound from cable-in-conduit-conductor (CICC) and cooled by supercritical Helium (He) delivered to ~120 inner diameter (ID) turns through integrally welded "inlets." The flow to each inlet splits and passes through two pancakes, exiting at outlets. While both the He supply and return points (outlets) require penetrating the conduit wall, the inlets reside in the highest stress field, and thus become the more critical structural element.The CS Conceptual Design Review (CRD) reference He inlet design has a long, narrow slot in the inside diameter (ID) turn wall with pencil-tip shaped ends. This shape is optimized in order to minimize the hoop stress concentration. The slot length is chosen to expose each of the six superconducting (SC) sub-cables to the He cooling supply. Implementing this design at 120 inlet sites requires substantial machining and welding operations where even virgin conduit has minimal structural margin.A design space exploration produces numerous inlet options. One configuration emerges as the new reference configuration: the oblong, heavy-wall boss. It addresses all of the critical issues: bi-axial stress field, pressure drop and sub-cable flow uniformity, manufacturing costs (complexities and risks) and in-service robustness (least invasive, greatest margin).Finite element (FE) simulations are presented which highlight the results of the optimization and evaluation process.