ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
EnergySolutions to help explore advanced reactor development in Utah
Utah-based waste management company EnergySolutions announced that it has signed a memorandum of understating with the Intermountain Power Agency and the state of Utah to explore the development of advanced nuclear power generation at the Intermountain Power Project (IPP) site near Delta, Utah.
Paresh Patel, C. B. Sumod, D. P. Thakkar, L. N. Gupta, V. B. Patel, L. K. Bansal, K. Qureshi, V. Vadher, U. K. Baruah, N. P. Singh
Fusion Science and Technology | Volume 64 | Number 1 | July 2013 | Pages 39-44
Technical Paper | doi.org/10.13182/FST13-A17045
Articles are hosted by Taylor and Francis Online.
Regulated high-voltage power supplies (RHVPSs) have been developed at Institute for Plasma Research and utilized for neutral beam and radio-frequency heating applications of the steady-state superconducting tokamak (SST-1) up to 80-kV, 130-A rating. They were developed in-house and are being delivered to different research institutes for various applications.The RHVPS delivers power to various loads at the megawatt level. These loads have very low fault energy tolerance; therefore, fault protection is mandatory. In addition to this, at each stage of the power transformation/conversion, a special diagnosis is necessary to protect the power supply components. Also, the output fault protection has to be done in such a manner that fault energy is not more than 10 J. In fault conditions, the output has to be turned off within 2 s. Having these requirements, an output fault-protection system has been developed with suitable sensors and to manage fast turn off, choosing appropriate components.The multiple-secondary transformers (two of them, each at a 5.6 MVA rating with 40 outputs) are used at the front end of the RHVPS. They may become damaged for overload at any one of their secondaries, while remaining secondaries carry much less current or no current. Such a localized overload is not sufficient for tripping the main circuit breaker, whose tripping level is set to an actual overload of the transformer. A special technique is applied to sense and diagnose this fault in addition to routine overload sensing. Differentiation of such a typical fault from a real overload condition is done by sensing and monitoring the primary current of the transformer with reference to different operating scenarios. Electronic means are used for fast detection and isolation of the RHVPS from the utility supply. The presented system effectively protects the transformer from fault at any one of its 40 secondaries and in an actual overload situation.This paper describes an overall RHVPS power scheme along with output fault protection and an internal fault diagnosis system and test results thereof.