ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
G. L. Jackson, V. S. Chan, R. D. Stambaugh
Fusion Science and Technology | Volume 64 | Number 1 | July 2013 | Pages 8-12
Technical Paper | doi.org/10.13182/FST13-A17042
Articles are hosted by Taylor and Francis Online.
The tritium burnup fraction fburnup can strongly affect the design of a fusion reactor since it influences the size of the tritium reprocessing plant, the on-site tritium inventory, and hence, the licensing requirements and cost of the entire plant. In this paper a simple analytic expression for fburnup is derived and then applied to typical parameters proposed for three possible fusion devices: ARIES-AT, FDF, and ITER. We find that for these parameters the burnup fraction is most strongly affected by the global recycling coefficient (through the global replacement time) and the fueling efficiency. The latter term may be the most easily influenced by plant design, such as by high-field-side pellet injection, for example. Because of the hotter edge plasmas in these devices compared to present-day tokamaks, the recycling coefficient will be lower, reducing the tritium burnup fraction. While this may not adversely affect ITER, which is limited to 400-s pulses for the inductive scenario, the tritium reprocessing for nearly continuous operation of devices such as ARIES-AT must be carefully considered in the overall plant design.