ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
EnergySolutions to help explore advanced reactor development in Utah
Utah-based waste management company EnergySolutions announced that it has signed a memorandum of understating with the Intermountain Power Agency and the state of Utah to explore the development of advanced nuclear power generation at the Intermountain Power Project (IPP) site near Delta, Utah.
Yoshiharu Nakamura
Fusion Science and Technology | Volume 63 | Number 3 | May 2013 | Pages 378-384
Technical Paper | Selected papers from IAEA-NFRI Technical Meeting on Data Evaluation for Atomic, Molecular and Plasma-Material Interaction Processes in Fusion, September 4-7, 2012, Daejeon, Republic of Korea | doi.org/10.13182/FST13-A16445
Articles are hosted by Taylor and Francis Online.
An electron swarm study using molecular gas-rare gas mixtures is briefly reviewed, and the advantage of using these mixtures to evaluate inelastic electron collision cross-section data for molecules through electron swarm study is explained. This advantage also suggests a new procedure for deriving a consistent set of electron collision cross sections for molecules by using electron swarm data measured in pure molecular gas and in the molecular gas-rare gas mixtures alternately. The procedure is detailed by using an example of C2H4. The derived cross-section set for C2H4 covers the energy range where a conventional electron beam experiment is not practical and can be crucial for the quantitative modeling of relevant plasmas.