WIPP completed the commissioning of a large-scale ventilation system, known as the Safety Significant Confinement Ventilation System, this spring. The system will restore full ventilation to the underground repository. (Photo: DOE)
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
A view of the HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
Centrus Energy has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. That's the same amount of HALEU—900 kg—that the company today announced it has delivered to the DOE, completing Phase II of its contract. According to Centrus, the contract extension, which allows the company to begin Phase III, is valued at about $110 million through June 30, 2026.
A model of the Hinkley Point C station. (Image: UK government)
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
IAEA director general Rafael Grossi speaks during a session on combating marine pollution. (Photo: E. McDonald/IAEA)
Plastic waste is polluting the oceans and entering the human body in the form of microplastics. According to the United Nations, without immediate action the amount of plastic finding a way into the oceans each year could reach 37 million metric tons by 2040, becoming a threat to marine and human life.
In this artist’s concept, a notional spacecraft with a high-power plasma thruster is powered by kilowatt-level radiovoltaics. (Image: DARPA/Alan Clarke)
You could call it a power contest. Teams picked for a new research program from the Defense Advanced Research Projects Agency (DARPA) will compete to design radiovoltaic cells that can outperform others in measured power density and endure high-flux radiation from a U.S. Army Research Lab linear accelerator. The top teams will strive to make it through a second downselect based on the performance of cells sequestered in time capsules and subjected to even more punishing high-flux radiation. Concepts that make it to the bonus period have a chance to be built into radioisotope-fueled power systems uniquely suited to high-radiation regions of space or dark, remote places on Earth.
Paragon vice president John Portillo (left) and Terra Innovatum partner and chief business development officer Giordano Morichi at the signing ceremony. (Photo: Paragon)
Paragon Energy Solutions has signed a memorandum of understanding with Terra Innovatum, a developer of micro-modular nuclear reactors, to support the design and integration of instrumentation and control systems for Terra’s Solo micro-modular reactor. Paragon is a provider of safety-related I&C systems for the nuclear energy community.
Ann Gibeaut (center row, second from left), Tim Adkins (center row, far right), and other volunteer educators with Civil Air Patrol cadets. (Photo: Boone Composite Squadron, Civil Air Patrol)
Husband-and-wife team Timothy Adkins and Ann Gibeaut are using Geiger counters supplied by the American Nuclear Society to educate young people in West Virginia about nuclear science and ionizing radiation. In 2022, ANS donated some old nonfunctioning Geiger counters to Tim and Ann, who recalibrated them and got them working again.
The IAEA director general prepares to deliver his update. (Photo: Dean Calma/IAEA)
Rafael Mariano Grossi, director general of the International Atomic Energy Agency, has shared his concerns about the Iran-Israel conflict with the agency’s board of directors.
“Military escalation threatens lives, increases the chance of a radiological release with serious consequences for people and the environment and delays indispensable work towards a diplomatic solution for the long-term assurance that Iran does not acquire a nuclear weapon,” Grossi said on June 16. “Consistent with the objectives of the IAEA and its statute, I call on all parties to exercise maximum restraint to avoid further escalation.”
Looking down into K-State’s research reactor. (Photo: Kansas State University)
Susquehanna nuclear power plant in Salem Township, Pa.
Talen Energy Corporation and Amazon have signed an expanded power purchase agreement (PPA) whereby Talen agrees to supply electricity from its Susquehanna nuclear power plant for AI operations and other cloud technologies at Amazon Web Services’ data center campus next to the power plant.
June 13, 2025, 3:00PMNuclear NewsAlex Gilbert, Harsh Desai, Patrick Snouffer The Z1 heat source was the first Sr-90 heat source built in the United States in nearly four decades and the first of its kind for a commercial company. (Photo: Zeno Power)
In the fall of 2023, a small Zeno Power team accomplished a major feat: they demonstrated the first strontium-90 heat source in decades—and the first-ever by a commercial company.
Zeno Power worked with Pacific Northwest National Laboratory to fabricate and validate this Z1 heat source design at the lab’s Radiochemical Processing Laboratory. The Z1 demonstration heralded renewed interest in developing radioisotope power system (RPS) technology. In early 2025, the heat source was disassembled, and the Sr-90 was returned to the U.S. Department of Energy for continued use.
Housed at MIT’s Plasma Science and Fusion Center, the Schmidt Laboratory for Materials in Nuclear Technologies will use a compact cyclotron to accelerate the testing of materials for use in commercial fusion power plants. (Image: Rick Leccacorvi and Rui Vieira/PSFC)
The Massachusetts Institute of Technology’s Plasma Science and Fusion Center (PSFC) has launched the Schmidt Laboratory for Materials in Nuclear Technologies (LMNT). Backed by a philanthropic consortium led by Eric and Wendy Schmidt, LMNT is designed to speed up the discovery and evaluation of cost-effective materials that can withstand extreme fusion conditions for extended periods.