ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Nuclear power’s new rule book: Managing uncertainty in efficiency, safety, and independence
The U.S. nuclear industry is standing at its most volatile regulatory moment yet—one that will shape the trajectory and the safety of the industry for decades to come. Recent judicial, legislative, and executive actions are rewriting the rules governing the licensing and regulation of nuclear power reactors. Although these changes are intended to promote and accelerate the deployment of new nuclear energy technologies, the collision of multiple legal shifts—occurring simultaneously and intersecting with profound technological uncertainties—is overwhelming the Nuclear Regulatory Commission and threatening to destabilize investor and industry expectations.
Sunday, April 27, 2025|1:00–5:00PM MDT
Lawrence A
Cost: $49
Limited Space
Organizer: Xu Wu (North Carolina State University)
Machine Learning (ML) is a subset of Artificial Intelligence (AI) that studies computer algorithms which improve automatically through experience (data). ML algorithms typically build a mathematical model based on training data and then make predictions without being explicitly programmed to do so. Its performance increases with experience, in other words, the machine learns. AI/ML have achieved tremendous success in tasks such as computer vision, natural language processing, speech recognition, and audio synthesis, where the datasets are in the format of images, text, spoken words and videos. Meanwhile, their applications in engineering disciplines mostly focus on scientific data, which resulted in a burgeoning discipline called scientific machine learning (SciML) that blends scientific computing and ML. SciML brings together the complementary perspectives of computational science and computer science to craft a new generation of ML methods for complex applications across science and engineering. Examples of SciML include physics-informed ML, surrogate modeling & model reduction, Bayesian inverse problems, digital twins, and ML-based uncertainty, sensitivity, assimilation, and validation analysis.
The “SciML for Nuclear Engineering Applications” workshop series has been organized in M&C and PHYSOR conferences since 2021. The goal of this workshop series is to present the most recent advances on SciML applications in Nuclear Engineering, as well as to provide training on essential SciML research topics. We hope to augment the applications of AI/ML in scientific computing, and preparing the students for driving the next wave of data-driven scientific discovery in Nuclear Engineering. In this workshop, we will have four presentations that cover a wide range of topics, from fundamental SciML topics on an educational perspective to most recent research developments in SciML in various Nuclear Engineering areas.