ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TVA to file for Clinch River SMR construction permit by June
In a Q&A posted on TVA’s website last week about a “new nuclear heyday,” Bob Deacy shared his vision for the Clinch River nuclear site in Oak Ridge, Tenn.—and some news about next steps for the company’s small modular reactor plans.
The Tennessee Valley Authority’s senior vice president for the Clinch River project, Deacy described his vision for up to four SMRs built on plots smaller than a football field with state-of-the-art digital equipment and a newly trained workforce providing reliable 24/7 power to the grid.
Workshop
Sunday, October 3, 2021|9:00AM–12:00PM EDT
Session Chair:
Alireza Haghihat (Virginia Tech)
Student Producer:
Charles Goodman (NC State Univ.)
RAPID (Real-time Analysis for Particle-transport In-situ Detection) is developed based on the MRT (Multi-stage Response-function particle Transport) methodology that enables its real-time simulation capability. The current version of RAPID is capable of simulating nuclear systems such as spent fuel pools, spent fuel casks, and reactor cores. RAPID solves for pin-wise, axially-dependent fission density, critical/subcritical multiplication, and detector response. Recently, new algorithm for 3-D fuel burnup (bRAPID) calculation and reactor kinetics (tRAPID) have been developed and benchmarked for test problems. Experimental benchmarking for these latter algorithms are underway using the Jozef Stefan Institute’s TRIGA research reactor.
Further, a multi-user virtual reality system (VRS) has been developed that provides a web application for input preparation, real-time simulation, and output processing and visualization in a virtual environment. For an introduction, please view the following demo https://www.youtube.com/watch?v=1Q2ytjBrmXc
Topics to be covered:
Requirements: There will be access to wireless internet so that the participants can have remote access to VRS- RAPID. The current version of VRS-RAPID is optimized for a Personal Computer using the Google Chrome browser, but it can be accessed through iPad, Tablet, etc. using any other browser. To facilitate establishing individual accounts, participants are encouraged to contact Prof. Haghighat prior to the workshop.
To access the session recording, you must be logged in and registered for the meeting.
Register NowLog In
To join the conversation, you must be logged in and registered for the meeting.