ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Workshop
Sunday, October 3, 2021|9:00AM–12:00PM EDT
Session Chair:
Alireza Haghihat (Virginia Tech)
Student Producer:
Charles Goodman (NC State Univ.)
RAPID (Real-time Analysis for Particle-transport In-situ Detection) is developed based on the MRT (Multi-stage Response-function particle Transport) methodology that enables its real-time simulation capability. The current version of RAPID is capable of simulating nuclear systems such as spent fuel pools, spent fuel casks, and reactor cores. RAPID solves for pin-wise, axially-dependent fission density, critical/subcritical multiplication, and detector response. Recently, new algorithm for 3-D fuel burnup (bRAPID) calculation and reactor kinetics (tRAPID) have been developed and benchmarked for test problems. Experimental benchmarking for these latter algorithms are underway using the Jozef Stefan Institute’s TRIGA research reactor.
Further, a multi-user virtual reality system (VRS) has been developed that provides a web application for input preparation, real-time simulation, and output processing and visualization in a virtual environment. For an introduction, please view the following demo https://www.youtube.com/watch?v=1Q2ytjBrmXc
Topics to be covered:
Requirements: There will be access to wireless internet so that the participants can have remote access to VRS- RAPID. The current version of VRS-RAPID is optimized for a Personal Computer using the Google Chrome browser, but it can be accessed through iPad, Tablet, etc. using any other browser. To facilitate establishing individual accounts, participants are encouraged to contact Prof. Haghighat prior to the workshop.
To access the session recording, you must be logged in and registered for the meeting.
Register NowLog In
To join the conversation, you must be logged in and registered for the meeting.