ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Sunday, July 20, 2025|1:00–5:00PM EDT
Emerging Technologies for Fuel Management Application: Optimization of Core Designs using Artificial Intelligence
Price: $49
Organizers: Westinghouse/INL
Time: 4 hrs total, 1 hr ACE and 2.5 hr RAVEN and 0.5 hr both presenters discuss comparison of surrogate modeling techniques and GA for this application.
This will be a highly interactive demonstration, but the participants will not be able to run the codes due to license complications. So, they are welcome to bring laptops if they want to download the open source Raven code as example, but they won’t have access to the nodal simulation codes to be able to actually generate any LPs.
Introduction to RAVEN: RAVEN is a multi-purpose stochastic platform that integrates uncertainty propagation, machine learning, optimization, and data analysis methods, and it provides a unique language to apply these methods to user-provided simulation models. With RAVEN, users can create customizable statistical analysis/optimization workflows where the response of simulation models is explored (e.g., for uncertainty propagation, model optimization, model calibration and model validation) for a variety of initial and operating conditions and the resulting data can be analyzed using machine learning, data mining and artificial intelligence algorithms. RAVEN orchestrates these machine learning/digital twinning pipelines on multiple operating systems and hardware configurations, ranging from laptops to high performance computing (HPC) environments. RAVEN also provides a plug-in interface that has already been leveraged by many system analysis and design tools, which enable simple multi-code integration across simulation tools.
An overview of the software is available at https://github.com/idaholab/raven/wiki
The software is open source and can be downloaded at: https://github.com/idaholab/raven
Training Objectives: The first objective is to provide a general understanding of the RAVEN package and its main capabilities. Second, a series of practical examples will be provided in ascending level of complexity, starting from the simplest statistical analysis to the generation of the complex machine learning models and their utilization in system analysis and uncertainty quantification. Third, the system optimization, especially, plant fuel reload optimization with genetic algorithms will be covered. This training section will include a theoretical/code usage overview of the subject capability and demonstrations. If the attendees would like to try some demonstrations, we recommend the attendees have their own laptop ready and follow the installation procedures provided in https://pypi.org/project/raven-framework/ before the workshop.
Detailed agenda will be provided as we come closer to the workshop date.