ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
The spark of the Super: Teller–Ulam and the birth of the H-bomb—rivalry, credit, and legacy at 75 years
In early 1951, Los Alamos scientists Edward Teller and Stanislaw Ulam devised a breakthrough that would lead to the hydrogen bomb [1]. Their design gave the United States an initial advantage in the Cold War, though comparable progress was soon achieved independently in the Soviet Union and the United Kingdom.
Challenge: Accelerate development and qualification of advanced materials.
How: Use science-based design to reduce the development and qualification timeline for new nuclear fuels and advanced materials that can withstand extreme fission, fusion, and space power and propulsion environments.
Background: Advanced fission and fusion reactor designs offer many potential benefits, but will require new materials to be optimized. These advanced reactors have unique challenges that call for materials to resist corrosion when in prolonged contact with liquid salts or liquid metals, remain strong at elevated temperatures in a neutron field, maintain structural integrity when exposed to high fluxes of light ions and high heat flux, resist reaction in a loss of coolant event, and more.
Materials must be developed and qualified for each of these areas so that they can be implemented in new reactors. Materials issues lie at the heart of many of the technology issues that need to be solved. Without advanced materials, adequately qualified so that they can be used in engineering designs, we will never have a viable fusion or advanced fission power plant. This is a multi-faceted challenge that benefits not only nuclear energy research, but has applications for many other industries.
The current development and qualification timeline is long, especially due to limited experimental facilities and capabilities for in-reactor material irradiation testing. Significant scientific advances over the past few decades have enabled us to improve our understanding of irradiation effects on materials, including predictive capabilities. As such, we believe we can utilize these advancements to accelerate the materials qualification timeline, effectively reducing that barrier against deployment of future reactor technologies. Realizing this goal will include smart use of advanced modeling approaches, the establishment of experimental facilities and data generation for validation analysis (especially for advanced reactors), and reconsideration or modification of existing requirements for in-reactor material irradiation testing.
Additionally, decades of ion beam irradiation have proven it to be an extremely useful tool to enhance the understanding of radiation damage in materials for nuclear applications. Inducing radiation damage utilizing ion beams in structural materials and fuels causes high displacement damage rates and therefore accelerates the research on the materials response under these conditions.
Last modified May 12, 2017, 1:23am CDT