ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
Jeffrey E. Woollard, Thomas E. Blue, Nilendu Gupta, Reinhard A. Gahbauer
Nuclear Technology | Volume 115 | Number 1 | July 1996 | Pages 100-113
Technical Paper | Radiation Protection | doi.org/10.13182/NT96-A35279
Articles are hosted by Taylor and Francis Online.
Design parameters for an epithermal neutron field for an accelerator-based source of neutrons for boron neutron capture therapy are developed. The parameters that are developed incorporate predicted biological effects in patients’ heads. They are based on an energy-spectrum-dependent neutron normal-tissue relative biological effectiveness and the treatment planning methodology of Gahbauer and his coworkers, which includes the effects of dose fractionation. The neutron field optimization parameters are evaluated for two epithermal neutron fields resulting from an accelerator-based neutron source with two different moderator assemblies. For the two moderator assemblies and moderator thicknesses evaluated, the D2O-Li2CO3 moderator assembly is superior to the BeO-MgO moderator assembly. The absorbed-dose delivered to the tumor for the D2O-Li2CO3 moderator assembly is larger than that for the BeO-MgO moderator assembly for almost all tumor depths. The treatment times for the D2O-Li2CO3 moderator assembly are slightly longer than for the BeO-MgO moderator assembly. However, for a 10-mA proton current, the treatment times for both are reasonable.