ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
Rahim Nabbi
Nuclear Technology | Volume 64 | Number 1 | January 1984 | Pages 5-13
Technical Paper | Nuclear Safety | doi.org/10.13182/NT84-A33321
Articles are hosted by Taylor and Francis Online.
The core dynamic analysis of an anticipated heat removal transient without scram in a high-temperature gas-cooled reactor has indicated that in case of a failure of core cooling, the reactor undergoes a selfshutdown after 1 min because of its negative temperature coefficients of reactivity. If the decay heat removal system operates according to plant specification, recriticality, and thus nuclear power generation, occurs. However, the maximum rise in fuel elements temperature is limited to 50°C due to the high heat capacity of the core. Without taking into consideration the effect of xenon feedback on the neutron kinetics, a new steady core state is established after 2 h in which the fuel temperature and gas outlet temperature at the lower core edge are 195°C higher than in normal operation. Due to transient xenon poisoning, a rise in gas outlet temperature only occurs during the first 70 min and amounts to 70°C. For this reason undesirable transient strains on the components connected behind the core are not expected. A slow xenon buildup during the first hour ensures a long-term subcriticality of the reactor. Without any contribution from the shutdown system, this leads to a decrease in nuclear power and thus to core cooling with functioning decay heat removal.