ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Fusion office bill introduced in line with DOE reorganization plan
Cornyn
Padilla
Sens. Alex Padilla (D., Calif.) and John Cornyn (R., Texas) have introduced bipartisan legislation to formally establish the Office of Fusion at the Department of Energy. This move seeks to codify one of the many changes put forward by the recent internal reorganization plan for offices at the DOE.
Companion legislation has been introduced in the House of Representatives by Reps. Don Beyer (D., Va.) and Jay Obernolte (R., Calif.), who are cochairs of the House Fusion Energy Caucus.
Details: According to Obernolte, “Congress must provide clear direction and a coordinated federal strategy to move fusion from the lab to the grid, and this legislation does exactly that.”
Hiroshige Kumamaru, Yutaka Kukita, Hideaki Asaka, Ming Wang, Etsuo Ohtani
Nuclear Technology | Volume 126 | Number 3 | June 1999 | Pages 331-339
Technical Note | Thermal Hydraulics | doi.org/10.13182/NT99-A2978
Articles are hosted by Taylor and Francis Online.
The effectiveness of intentional depressurization of a pressurized water reactor primary system as a means to maintain core cooling during a small-break loss-of-coolant accident (SBLOCA) was studied. The investigation was based on experiments conducted at the Rig of Safety Assessment-V (ROSA-V) Large Scale Test Facility (LSTF) and RELAP5/MOD3 code calculations performed for LSTF geometry, together with single lumped-volume model calculations - all simulating hypothetical total failure of the high-pressure-injection system. For cold-leg breaks ≶2.5% of the leg cross-sectional area, experimental and analytical results have shown that the break discharge depressurizes the primary system to the accumulator (ACC) and low-pressure-injection (LPI) system injection pressures, and thus the core cladding temperature would be maintained below ~1000 K. For break areas ≤1.0%, on the other hand, additional depressurization means are needed to initiate the ACC injection before the core is overheated. RELAP5/MOD3 calculations have shown that steam venting through the pressurizer power-operated relief valves would be effective in depressurizing the primary system to the ACC and LPI pressures. However, for break areas <0.5%, the peak cladding temperature would finally reach the safety criterion of 1473 K.