ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Akio Yamamoto, Masayuki Toujou, Kentarou Komori, Yasunori Kitamura, Yoshihiro Yamane
Nuclear Technology | Volume 154 | Number 3 | June 2006 | Pages 318-327
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT06-A3736
Articles are hosted by Taylor and Francis Online.
In this paper, new optimization algorithms for the in-core fuel shuffling sequence of a boiling water reactor (BWR) are proposed to reduce outage time. During the short outage of a BWR, fuel shuffling can be a critical path in the periodic overall plant inspection. Therefore, a reduction in operation time for in-core fuel shuffling is essential to improve the plant capacity factor. For BWR in-core fuel shuffling, the shuffling sequence should be selected carefully since a fuel shuffling operation may affect those following it. Furthermore, several constraints must be satisfied during the in-core fuel shuffling of a BWR; e.g., two fuel assemblies must be inserted diagonally in a cell to fix the position of a control blade in it. Therefore, it is difficult to optimize BWR in-core fuel shuffling. In order to resolve this issue, new optimization methods are proposed, and the performances of some optimization algorithms are compared. Test calculations in actual BWR plants reveal that the workload for in-core fuel shuffling can be reduced by the proposed methods. The results of this paper will contribute to increasing the plant capacity factor by reducing the outage time.