Research on the utilization of thorium-based fuels in the intermediate neutron spectrum of a tight-pitch light water reactor (LWR) lattice is reported. The analysis was performed using the Studsvik/Scandpower lattice physics code HELIOS. The results show that thorium-based fuels in the intermediate spectrum of tight-pitch LWRs have considerable advantages in terms of conversion ratio, reactivity control, nonproliferation characteristics, and a reduced production of long-lived radiotoxic wastes. Because of the high conversion ratio of thorium-based fuels in intermediate spectrum reactors, the total fissile inventory required to achieve a given fuel burnup is only 11 to 17% higher than that of 238U fertile fuels. However, unlike 238U fertile fuels, the void reactivity coefficient with thorium-based fuels is negative in an intermediate spectrum reactor. This provides motivation for replacing 238U with 232Th in advanced high-conversion intermediate spectrum LWRs, such as the reduced-moderator reactor or the supercritical reactor.