ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Matjaz Ravnik, Tomaz Zagar, Andreja Persic
Nuclear Technology | Volume 128 | Number 1 | October 1999 | Pages 35-45
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT99-A3012
Articles are hosted by Taylor and Francis Online.
Calculations of fuel element burnup for realistic mixed core conditions in a 250-kW TRIGA Mark II reactor are presented. Two types of fuel elements are considered: 70% enriched FLIP and 20% enriched standard fuel elements. Two calculation models are compared. The first is based on a one-dimensional two-group diffusion approximation (the TRIGAP computer code), and the second is based on a two-dimensional four-group diffusion equation (the TRIGLAV computer code). In both cases the unit-cell group constants are generated with the WIMS code. Results of the calculations are intercompared to evaluate the influence of the two-dimensional effects on fuel element burnup. The following two-dimensional effects are considered: mixed rings, in-core water gaps, vicinity of control rods, and asymmetric core loading patterns. Relative differences in fuel element burnup of 10% on average and up to 80% in extreme cases are observed because of the two-dimensional effects. The accuracy of the calculation is estimated also by comparing the calculated results to the measurements using the reactivity method.