ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
J. B. Yang, X. G. Tuo, Z. Li, Y. Cheng, L. Wang, H. H. Wang, B. Cai, M. Z. Liu
Nuclear Technology | Volume 184 | Number 2 | November 2013 | Pages 233-238
Technical Paper | Radiation Transport and Protection | doi.org/10.13182/NT13-A22318
Articles are hosted by Taylor and Francis Online.
To improve the yield of online prompt gamma neutron activation analysis, the Monte Carlo N-Particle Transport Code (MCNP) is used to simulate the computation and analysis of the material and thickness of reflectors on both sides of the sample chamber as well as the type and thickness of the neutron-absorbing material in front of the detector. The simulation shows that the optimal thickness of the reflecting material is [approximately]100 mm when heavy water is added on both sides of the sample chamber and the optimal thickness of the neutron-absorbing material is [approximately]50 mm when polyethylene-containing boron is added in front of the detector. The experiment demonstrated that the yield of prompt gamma rays of the main elements in the cement sample increased to some extent.