ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Sellafield awards $3.86B in infrastructure contracts to three companies
Sellafield Ltd., the site license company overseeing the decommissioning of the U.K.’s Sellafield nuclear site in Cumbria, England, announced the award of £2.9 billion (about $3.86 billion) in infrastructure support contracts to the companies of Morgan Sindall Infrastructure, Costain, and HOCHTIEF (UK) Construction.
Patrick S. Brantley, Edward W. Larsen
Nuclear Science and Engineering | Volume 134 | Number 1 | January 2000 | Pages 1-21
Technical Paper | doi.org/10.13182/NSE134-01
Articles are hosted by Taylor and Francis Online.
The simplified P3 (SP3) approximation to the multigroup neutron transport equation in arbitrary geometries is derived using a variational analysis. This derivation yields the SP3 equations along with material interface and Marshak-like boundary conditions. The multigroup SP3 approximation is reformulated as a system of within-group problems that can be solved iteratively. An "explicit" iterative algorithm for solving the within-group problem is described, Fourier analyzed, and shown to be more efficient than the traditional FLIP implicit algorithm. Numerical results compare diffusion (P1), simplified P2 (SP2), and simplified P3 calculations of a mixed-oxide (MOX) fuel benchmark problem to a reference transport calculation. The SP3 approximation can eliminate much of the inaccuracy in the diffusion and SP2 calculations of MOX fuel problems.