ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Flamanville-3 reaches full power
France’s state-owned electric utility EDF has announced that Flamanville-3—the country’s first EPR—reached full nuclear thermal power for the first time, generating 1,669 megawatts of gross electrical power. This major milestone is significant in terms of both this project and France’s broader nuclear sector.
Alexis Jinaphanh, Nicolas Leclaire, Bertrand Cochet
Nuclear Science and Engineering | Volume 184 | Number 1 | September 2016 | Pages 53-68
Technical Paper | doi.org/10.13182/NSE16-2
Articles are hosted by Taylor and Francis Online.
A continuous-energy sensitivity coefficient calculation to nuclear data capability has been recently developed in Version 5.C.1 of the MORET Monte Carlo code developed at Institut de Radioprotection et de Sûreté nucléaire (IRSN). The method used for implementation is the differential operator method. In this method, the estimation of the fission source derivatives is replaced by an estimation of the adjoint flux. Both methodology and tallies are described in this paper. The preliminary verification is mainly performed using code-to-code comparisons with the SCALE6.1 and MCNP6.1 software packages. Configurations used for verification are the Organisation for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA) Uncertainty Analyses for Criticality Safety Assessment (UACSA) Expert Group benchmarks, the Jezebel International Criticality Safety Benchmark Evaluation Project (ICSBEP) benchmark, and a configuration from the Matériaux en Interaction et Réflexion Toutes Epaisseurs (MIRTE) French proprietary experimental program. Results show good agreement among the different codes.