ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
EPRI’s new program aims to strengthen grid resilience
The Electric Power Research Institute has launched a global initiative to prepare future grids by modernizing how the electricity-generating sector detects, anticipates, and responds to emerging risks and manages technological transformation. The nonprofit energy research and development organization intends for the initiative, called Rapid Adaptation of Grid Defense, Analytics, and Resilience (RADAR), to provide a scalable framework, advanced tools, and targeted training for strengthening grid resilience and reliability.
O. K. Harling
Nuclear Science and Engineering | Volume 33 | Number 1 | July 1968 | Pages 41-50
Technical Paper | doi.org/10.13182/NSE68-A20916
Articles are hosted by Taylor and Francis Online.
The results of an extensive slow-neutron inelastic scattering study of heavy water at 299°K are reported. High-energy resolution measurements were made on thin D2O samples to obtain the double-differential scattering cross sections for energy transfers to 7 kT and momentum transfers to 9.5 Å−1. A spectral density for the modes of motion in D2O has been obtained by an extrapolation technique. Experimental results are presented in the form of the Egelstaff scattering function and are compared with calculations based on the McMurry-Russell modification of the Nelkin model for water and the Egelstaff-Schofield theory for an incoherent scatterer with a Gaussian self-correlation function.