ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
O. K. Harling
Nuclear Science and Engineering | Volume 33 | Number 1 | July 1968 | Pages 41-50
Technical Paper | doi.org/10.13182/NSE68-A20916
Articles are hosted by Taylor and Francis Online.
The results of an extensive slow-neutron inelastic scattering study of heavy water at 299°K are reported. High-energy resolution measurements were made on thin D2O samples to obtain the double-differential scattering cross sections for energy transfers to 7 kT and momentum transfers to 9.5 Å−1. A spectral density for the modes of motion in D2O has been obtained by an extrapolation technique. Experimental results are presented in the form of the Egelstaff scattering function and are compared with calculations based on the McMurry-Russell modification of the Nelkin model for water and the Egelstaff-Schofield theory for an incoherent scatterer with a Gaussian self-correlation function.