ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
Robert D. Woolley
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 1174-1178
Alternative and Advanced Concepts | doi.org/10.13182/FST98-A11963772
Articles are hosted by Taylor and Francis Online.
Abandoning superconductors for magnetic fusion reactors and instead using resistive magnet designs based on cheap copper or aluminum conductor material operating at “room temperature” (300°K) can reduce the capital cost per unit fusion power and simplify plant operations.1 By increasing unit size well beyond that of present MFE. conceptual designs using superconducting electromagnets, the recirculating power fraction needed to operate resistive electromagnets can be made as close to zero as needed for economy without requiring superconductors. Other advantages of large fusion plant size, such as very long inductively driven pulses, may also help reduce the cost per unit fusion power.2