ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
L. Rodrigo, J.M. Miller, S.R. Bokwa, R.E. Johnson, B.M. MacDonald, J. Senohrabek
Fusion Science and Technology | Volume 21 | Number 2 | March 1992 | Pages 629-635
Safety and Measurement (Monitoring) | doi.org/10.13182/FST92-A29818
Articles are hosted by Taylor and Francis Online.
Historically, ionization chambers have been used successfully to measure low-level tritium concentrations in air for radiation protection purposes. Problems have been encountered in applying this technique to measure much higher concentrations of tritium in gases other than air, particularly to measure tritium in argon and helium. An experimental program was, therefore, initiated to investigate the various factors that affect the response of ionization chambers. Carrier gas effects on the measurement of elemental tritium were investigated in the concentration range 0–150 Ci/m3. Higher than theoretical calibration factors were obtained consistently with low-level tritium gas standards in both helium and argon, while with high-level gas standards the experimental calibration factors were close to the theoretical value. Use of a commercial ionization chamber to measure tritiated water vapour in dry air streams resulted in severe contamination of the chamber. Water swamping of the dry air stream reduced the ionization chamber contamination to a negligible level, allowing reliable measurements to be made. The calibration of ionization chambers with representative process gases and operating conditions is necessary to ensure reliable tritium concentration measurements.