ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
Rongbao Zhu, Xiaozhong Wang, Feng Lu, Dazhao Ding, Jianyu He, Hengjun Liu, Jincai Jiang, Guoan Chen, Yuan Yuan, Liucheng Yang, Zhonglin Chen, Howard O. Menlove
Fusion Science and Technology | Volume 20 | Number 3 | November 1991 | Pages 349-353
Technical Note on Cold Fusion | doi.org/10.13182/FST91-A29675
Articles are hosted by Taylor and Francis Online.
A high-level neutron coincidence counter equipped with 18 3He tubes and a JSR-11 shift register unit with a detection limit of 0.20 n/s for a 2-h run is used to study the neutron signals in D2 gas experiments. Different material pretreatments are selected to review the changes in frequency and size of the neutron burst production. Experimental sequence is deliberately designed to distinguish the neutron burst from fake signals, e.g., electronic noise pickup, cosmic rays, and other sources of environmental background. Ten batches of dry fusion samples are tested, among them, seven batches with neutron burst signals that occur roughly from −100°C to near room temperature. In the first four runs of a typical sample batch, seven neutron bursts are observed with neutron numbers from 15 to 482, which are 3 and 75 times, respectively, higher than the uncertainty of the background. The samples seem to be inactive after four or five temperature cycles, and the inactive samples could be reactivated by degassing and recharging of deuterium. The same anomalous phenomena were observed in theMentou Valley Underground Laboratory situated 580 m below ground.