ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Y. Gohar, M. Billone, H. Attaya, M. Sawan
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1457-1462
ITER | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29546
Articles are hosted by Taylor and Francis Online.
The U.S. Solid Breeder Blanket is designed to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. Safety, low tritium inventory, reliability, flexibility cost, and minimum R&D requirements are the other design criteria. To satisfy these criteria, the produced tritium is recovered continuously during operation and the blanket coolant operates at low pressure. Beryllium multiplier material is used to control the solid-breeder temperature. Neutronics and thermal design analyses were performed in an integrated manner to define the blanket configuration. The reference parameters of ITER including the operating scenarios, the neutron wall loading distribution and the copper stabilizer are included in the design analyses. Several analyses were performed to study the impact of the reactor parameters, blanket dimensions, material characteristics, and heat transfer coefficient at the material interfaces on the blanket performance. The design analyses and the results from the different studies are summarized.