ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
Ezio Bittoni, Marcel Haegi
Fusion Science and Technology | Volume 18 | Number 3 | November 1990 | Pages 373-383
Alpha Particles in Fusion Research | Technical Paper | doi.org/10.13182/FST90-A29270
Articles are hosted by Taylor and Francis Online.
Calculation of alpha-particle confinement by a guiding center orbit-following numerical code requires the computation of very long particle trajectories. Due to their enormous length, these computations are subject to the possible accumulation of small errors, and the alpha-particle population is usually extrapolated from a single-particle history for every point of the initial parameter space. To overcome these difficulties, a numerical diffusion coefficient is derived for each point of the initial parameter space by averaging over a certain number of single-particle histories for each point of this space. This method has been applied to fast-alpha-particle confinement of the Next European Torus benchmark and the numerically derived diffusion coefficients are compared with analytical expressions from theoretical models.